Semi-Bayes and empirical Bayes adjustment methods for multiple comparisons.
نویسندگان
چکیده
Epidemiological studies often involve multiple comparisons, and may therefore report many "false positive" statistically significant findings simply because of the large number of statistical tests involved. Traditional methods ofadjustment for multiple comparisons, such as the Bonferroni method, may induce investigators to ignore potentially important findings, because they do not take account of the fact that some variables are of greater a priori interest than others. The Bonferroni method involves "adjustings all of the findings to take account of the number of comparisons involved even though the a priori evidence may be very strong for some exposures, but may be much weaker (or non-existent)for the other exposures being considered. Furthermore, the Bonferroni method only "adjusts" for estimates of statistical signficance (p-values) and does not "adjust" the effect estimates themselves (e.g. odds ratios and 95% CI). Empirical Bayes and semi-Bayes methods can enable the avoidance of numerous false positive associations, and can produce effect estimates that are, on the average, more valid. In this paper, we report on a research in which we applied these methods to a case-control study of occupational risk factors for lung cancer and tested their performance.
منابع مشابه
Parametric Empirical Bayes Test and Its Application to Selection of Wavelet Threshold
In this article, we propose a new method for selecting level dependent threshold in wavelet shrinkage using the empirical Bayes framework. We employ both Bayesian and frequentist testing hypothesis instead of point estimation method. The best test yields the best prior and hence the more appropriate wavelet thresholds. The standard model functions are used to illustrate the performance of the p...
متن کاملInvariant Empirical Bayes Confidence Interval for Mean Vector of Normal Distribution and its Generalization for Exponential Family
Based on a given Bayesian model of multivariate normal with known variance matrix we will find an empirical Bayes confidence interval for the mean vector components which have normal distribution. We will find this empirical Bayes confidence interval as a conditional form on ancillary statistic. In both cases (i.e. conditional and unconditional empirical Bayes confidence interval), the empiri...
متن کاملEmpirical Bayes adjustments for multiple results in hypothesis-generating or surveillance studies.
Traditional methods of adjustment for multiple comparisons (e.g., Bonferroni adjustments) have fallen into disuse in epidemiological studies. However, alternative kinds of adjustment for data with multiple comparisons may sometimes be advisable. When a large number of comparisons are made, and when there is a high cost to investigating false positive leads, empirical or semi-Bayes adjustments m...
متن کاملHierarchical Regression for Multiple Comparisons in a Case-Control Study of Occupational Risks for Lung Cancer
BACKGROUND Occupational studies often involve multiple comparisons and therefore suffer from false positive findings. Semi-Bayes adjustment methods have sometimes been used to address this issue. Hierarchical regression is a more general approach, including Semi-Bayes adjustment as a special case, that aims at improving the validity of standard maximum-likelihood estimates in the presence of mu...
متن کاملEMPIRICAL BAYES ANALYSIS OF TWO-FACTOR EXPERIMENTS UNDER INVERSE GAUSSIAN MODEL
A two-factor experiment with interaction between factors wherein observations follow an Inverse Gaussian model is considered. Analysis of the experiment is approached via an empirical Bayes procedure. The conjugate family of prior distributions is considered. Bayes and empirical Bayes estimators are derived. Application of the procedure is illustrated on a data set, which has previously been an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Epidemiologia e prevenzione
دوره 32 2 شماره
صفحات -
تاریخ انتشار 2008